Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Qian-Jun Deng, ${ }^{\text {a,b }}$ Zhuang-Tian Liu ${ }^{\mathrm{a}}$ and Ming-Hua Zeng ${ }^{\mathrm{a} *}$
${ }^{\text {a D Department }}$ of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Science, Foshan University, Foshan 528000, Guangdong, People's Republic of China

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.149$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(imidazolium) diaquabis(pyridine-2,5-dicar-boxylato- $\kappa^{2} N, O$)cobaltate(II) tetrahydrate

The title complex, $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, was prepared by a hydrothermal reaction. Each $\mathrm{Co}^{\mathrm{II}}$ atom is located on a crystallographic inversion centre and displays a distorted octahedral coordination geometry. The face-to-face distance of 3.529 (7) \AA between partially overlapped parallel pyridine rings reflects a $\pi-\pi$ stacking interaction between neighbouring $\mathrm{Co}^{\mathrm{II}}$ complex molecules. A network of $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds helps to stabilize the crystal packing.

Comment

The unique strength and direction of hydrogen bonding play a dominant role in the generation of a variety of molecular architectures and molecular recognition in chemical and biological sciences (Lehn et al., 1996; Steiner, 2002). The ligand pyridine-2,5-dicarboxylic acid, known both as a multiple proton donor and acceptor (MacDonald et al., 2000), can use its carboxylate O and pyridine N atoms, to form both monodentate and/or multidentate $M-\mathrm{O}$ and $M-\mathrm{N}$ metalligand bonds (Zeng et al., 2004). Protonated imidazole (Him) readily takes part in forming hydrogen-bonded networks (MacDonald et al., 2000). We report here the hydrothermal synthesis and crystal structure of the title complex, (I).

Received 2 June 2005
Accepted 5 July 2005
Online 9 July 2005

In (I), each $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated by two N atoms and two O atoms from two chelating pyridine-2,5-dicarboxylate (pdc) ligands, and two O atoms from two aqua ligands to furnish a distorted octahedral geometry. The aqua ligands are located at the axial positions (Table 1 and Fig. 1).

The face-to-face distance of 3.529 (7) \AA between partially overlapped parallel pyridine rings reflects a $\pi-\pi$ stacking interaction between neighbouring $\mathrm{Co}^{\mathrm{II}}$ complex anions. In addition, neighbouring $\mathrm{Co}^{\mathrm{II}}$ complex anions are linked to each other by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. With the help of $\pi-\pi$ stacking interactions and hydrogen bonds, these complex anions form one-dimensional linear chains running along the a axis. Protonated imidazoles link to the chains by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2 and Table 2). These chains are linked into a complex network by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (uncoordinated water and carboxylate, aqua ligands and uncoordinated water) and

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operator $(-x, 2-y,-z)$.
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (protonated imidazoles and uncoordinated water) hydrogen bonds (Fig. 3).

Experimental

Pyridine-2,5-dicarboxylic acid (0.5 mmol), imidazole (0.5 mmol), $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ and water $(8 \mathrm{ml})$ were stirred for 15 min in air, then transferred and sealed in a 23 ml Teflon reactor, which was heated at 413 K for 2 d and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. Red block-shaped crystals were obtained, and were washed with deionized water and absolute ethanol (yield $>20 \%$, based on Co).

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Co}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}-\right. \\
& \left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=635.41 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.844(5) \AA \\
& b=9.062(4) \AA \\
& c=9.635(4) \AA \\
& \alpha=97.7(3)^{\circ} \\
& \beta=116.80(3)^{\circ} \\
& \gamma=93.26(3)^{\circ} \\
& V=677.0(6) \AA^{3}
\end{aligned}
$$

Data collection

Siemens $R 3 m$ diffractometer ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.721, T_{\text {max }}=0.820$
3153 measured reflections
2959 independent reflections
2532 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.149$
$S=1.05$
2959 reflections
205 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
Perspective view of the chain along the a axis. Hydrogen bonds and $\pi-\pi$ stacking interactions are shown as dashed lines.

Figure 3
Packing diagram of (I). Dashed lines indicate hydrogen bonds.

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

Co1-O1W	$2.085(2)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.124(2)$
Co1-O1	$2.098(2)$		
O1 $W-\mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}$	$89.90(9)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$91.07(10)$
O1 $^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$90.10(9)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$101.77(9)$
O1 $W^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$91.08(10)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$78.23(9)$
O1 $W-\mathrm{Co} 1-\mathrm{N} 1$	$88.92(10)$		

Symmetry code: (i) $-x,-y+2,-z$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\text {ii }}$	0.70 (5)	2.01 (5)	2.703 (3)	169 (5)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 2 W$	0.86 (5)	1.85 (5)	2.688 (4)	166 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 C \cdots \mathrm{O} 4^{\text {iii }}$	0.97 (6)	1.78 (7)	2.731 (4)	165 (5)
$\mathrm{O} 2 W-\mathrm{H} 2 D \cdots \mathrm{O} 2^{\text {iv }}$	0.82 (7)	1.96 (7)	2.777 (4)	169 (6)
$\mathrm{O} 3 W-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.93 (6)	1.94 (6)	2.855 (4)	167 (5)
$\mathrm{O} 3 W-\mathrm{H} 3 \mathrm{D} \cdots \mathrm{O} 2$	0.75 (6)	2.14 (6)	2.882 (4)	168 (6)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.86	1.92	2.726 (4)	157
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 3 W$	0.86	1.99	2.797 (4)	156

Symmetry codes: (ii) $x-1, y, z$; (iii) $-x+1,-y+2,-z+1$; (iv) $-x,-y+1,-z$; (v) $-x+2,-y+2,-z+1$.

metal-organic papers

H atoms attached to C or N atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA)$ and refined as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$ or N$)$. O-bound H atoms were located in difference Fourier maps and refined with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: R3m Software (Siemens, 1990); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Guangxi Normal University and the Guangxi Science Fund for Distinguished Young Scholars (0447019) for supporting this study.

References

Bruker (1999). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Lehn, J.-M., Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F. \& Reinhoudt, D. N. (1996). Comprehensive Supramolecular Chemistry, Vol. 10. Oxford: Pergamon.

MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. \& Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Siemens (1990). R3m Software. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Zeng, M.-H., Feng, X.-L. \& Chen, X.-M. (2004). Dalton Trans. pp. 2217-2223.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

