metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qian-Jun Deng,^{a,b} Zhuang-Tian Liu^a and Ming-Hua Zeng^a*

^aDepartment of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, and ^bSchool of Science, Foshan University, Foshan 528000, Guangdong, People's Republic of China

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.053 wR factor = 0.149 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(imidazolium) diaquabis(pyridine-2,5-dicarboxylato- $\kappa^2 N$,O)cobaltate(II) tetrahydrate

Received 2 June 2005 Accepted 5 July 2005

Online 9 July 2005

The title complex, $(C_3H_5N_2)_2[Co(C_7H_3NO_4)_2(H_2O)_2]\cdot 4H_2O$, was prepared by a hydrothermal reaction. Each Co^{II} atom is located on a crystallographic inversion centre and displays a distorted octahedral coordination geometry. The face-to-face distance of 3.529 (7) Å between partially overlapped parallel pyridine rings reflects a π - π stacking interaction between neighbouring Co^{II} complex molecules. A network of O– H···O and O–H···N hydrogen bonds helps to stabilize the crystal packing.

Comment

The unique strength and direction of hydrogen bonding play a dominant role in the generation of a variety of molecular architectures and molecular recognition in chemical and biological sciences (Lehn *et al.*, 1996; Steiner, 2002). The ligand pyridine-2,5-dicarboxylic acid, known both as a multiple proton donor and acceptor (MacDonald *et al.*, 2000), can use its carboxylate O and pyridine N atoms, to form both monodentate and/or multidentate M—O and M—N metalligand bonds (Zeng *et al.*, 2004). Protonated imidazole (Him) readily takes part in forming hydrogen-bonded networks (MacDonald *et al.*, 2000). We report here the hydrothermal synthesis and crystal structure of the title complex, (I).

In (I), each Co^{II} atom is coordinated by two N atoms and two O atoms from two chelating pyridine-2,5-dicarboxylate (pdc) ligands, and two O atoms from two aqua ligands to furnish a distorted octahedral geometry. The aqua ligands are located at the axial positions (Table 1 and Fig. 1).

The face-to-face distance of 3.529 (7) Å between partially overlapped parallel pyridine rings reflects a π - π stacking interaction between neighbouring Co^{II} complex anions. In addition, neighbouring Co^{II} complex anions are linked to each other by O-H···O hydrogen bonds. With the help of π - π stacking interactions and hydrogen bonds, these complex anions form one-dimensional linear chains running along the *a* axis. Protonated imidazoles link to the chains by O-H···N hydrogen bonds (Fig. 2 and Table 2). These chains are linked into a complex network by O-H···O (uncoordinated water and carboxylate, aqua ligands and uncoordinated water) and

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), shown with 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operator (-x, 2 - y, -z).

 $N-H\cdots O$ (protonated imidazoles and uncoordinated water) hydrogen bonds (Fig. 3).

Experimental

Pyridine-2,5-dicarboxylic acid (0.5 mmol), imidazole (0.5 mmol), $Co(NO_3)_2$ ·6H₂O (0.5 mmol) and water (8 ml) were stirred for 15 min in air, then transferred and sealed in a 23 ml Teflon reactor, which was heated at 413 K for 2 d and then cooled to room temperature at a rate of 5 K h⁻¹. Red block-shaped crystals were obtained, and were washed with deionized water and absolute ethanol (yield > 20%, based on Co).

Crystal data

$(C_{3}H_{5}N_{2})_{2}[Co(C_{7}H_{3}NO_{4})_{2}-$	Z = 1
$(H_2O)_2]\cdot 4H_2O$	$D_x = 1.559 \text{ Mg m}^{-3}$
$M_r = 635.41$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 25
a = 8.844 (5) Å	reflections
b = 9.062 (4) Å	$\theta = 2-7^{\circ}$
c = 9.635 (4) Å	$\mu = 0.71 \text{ mm}^{-1}$
$\alpha = 97.70 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 116.80 \ (3)^{\circ}$	Block, red
$\gamma = 93.26 \ (3)^{\circ}$	$0.49 \times 0.38 \times 0.29 \text{ mm}$
V = 677.0 (6) Å ³	
Data collection	
Duta contection	
Siemens R3m diffractometer	$R_{\rm int} = 0.042$
ω scans	$\theta_{\rm max} = 27.0^{\circ}$
Absorption correction: ψ scan	$h = 0 \rightarrow 11$
(North <i>et al.</i> , 1968)	$k = -11 \rightarrow 11$

(North *et al.*, 1968) $T_{\min} = 0.721$, $T_{\max} = 0.820$ 3153 measured reflections 2959 independent reflections 2532 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.149$ S = 1.052959 reflections 205 parameters H atoms treated by a mixture of independent and constrained refinement $R_{int} = 0.042$ $\theta_{max} = 27.0^{\circ}$ $h = 0 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 10$ 2 standard reflections every 200 reflections intensity decay: none

```
w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0964P)^{2} + 0.3143P]
where P = (F_{o}^{2} + 2F_{c}^{2})/3
(\Delta/\sigma)_{max} < 0.001
\Delta\rho_{max} = 0.47 e Å<sup>-3</sup>
\Delta\rho_{min} = -0.51 e Å<sup>-3</sup>
```


Figure 2

Perspective view of the chain along the *a* axis. Hydrogen bonds and π - π stacking interactions are shown as dashed lines.

Figure 3

Packing diagram of (I). Dashed lines indicate hydrogen bonds.

Table 1		
Selected geometric parameters	(Å,	°).

Co1-O1W	2.085 (2)	Co1-N1	2.124 (2)
Co1-O1	2.098 (2)		
O1W-Co1-O1 ⁱ	89.90 (9)	O1W-Co1-N1 ⁱ	91.07 (10)
O1W-Co1-O1	90.10 (9)	O1 ⁱ -Co1-N1	101.77 (9)
$O1W^{i}$ -Co1-N1	91.08 (10)	O1-Co1-N1	78.23 (9)
O1W-Co1-N1	88.92 (10)		

Symmetry code: (i) -x, -y + 2, -z.

Lable 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{O1W-H1A\cdots O3^{ii}}$	0.70 (5)	2.01 (5)	2.703 (3)	169 (5)
$O1W - H1B \cdot \cdot \cdot O2W$	0.86 (5)	1.85 (5)	2.688 (4)	166 (4)
$O2W-H2C\cdots O4^{iii}$	0.97 (6)	1.78 (7)	2.731 (4)	165 (5)
$O2W - H2D \cdot \cdot \cdot O2^{iv}$	0.82 (7)	1.96 (7)	2.777 (4)	169 (6)
$O3W-H3C\cdots O1^{iv}$	0.93 (6)	1.94 (6)	2.855 (4)	167 (5)
$O3W-H3D\cdots O2$	0.75 (6)	2.14 (6)	2.882 (4)	168 (6)
$N2-H2B\cdots O3^{v}$	0.86	1.92	2.726 (4)	157
$N3-H3A\cdots O3W$	0.86	1.99	2.797 (4)	156

Symmetry codes: (ii) x - 1, y, z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x, -y + 1, -z; (v) -x + 2, -y + 2, -z + 1.

H atoms attached to C or N atoms were positioned geometrically (C-H = 0.93 Å and N-H = 0.86 Å) and refined as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$. O-bound H atoms were located in difference Fourier maps and refined with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *R3m Software* (Siemens, 1990); cell refinement: *R3m Software*; data reduction: *R3m Software*; program(s) used to solve structure: *SHELXTL* (Bruker, 1999); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Guangxi Normal University and the Guangxi Science Fund for Distinguished Young Scholars (0447019) for supporting this study.

References

- Bruker (1999). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lehn, J.-M., Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F. & Reinhoudt, D. N. (1996). *Comprehensive Supramolecular Chemistry*, Vol. 10. Oxford: Pergamon.
- MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Siemens (1990). R3m Software. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
- Zeng, M.-H., Feng, X.-L. & Chen, X.-M. (2004). Dalton Trans. pp. 2217-2223.